
Neural Networks

Lecture 3 
Learning in multi-layer networks



Preprocessing the input vectors

• Instead of trying to predict the answer directly from the 
raw inputs we could start by extracting  a layer of 
“features”.
– Sensible if we already know that certain combinations 

of input values would be useful (e.g. edges or corners 
in an image).

• Instead of learning the features we could design them by 
hand. 
– The hand-coded features are equivalent to a layer of 

non-linear neurons that do not need to be learned.
– So far as the learning algorithm is concerned, the 

activities of the hand-coded features are the input 
vector.



The connectivity of a perceptron

The input is recoded using 
hand-picked features that do 
not adapt.

Only the last layer of weights 
is learned. 

The output units are binary 
threshold neurons and are 
each learned independently.
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hand-coded
features
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Is preprocessing cheating?
• It seems like cheating if the aim to show how 

powerful learning is. The really hard bit is done 
by the preprocessing.

• Its not cheating if we learn the non-linear 
preprocessing.
– This makes learning much more difficult and 

much more interesting..
• Its not cheating if we use a very big set of non-

linear features that is task-independent. 
– Support Vector Machines make it possible to 

use a huge number of features without 
requiring much computation or data.



What can perceptrons do?

• They can only solve tasks if the 
hand-coded features convert the 
original task into a linearly 
separable one. How difficult is this?

• The N-bit parity task :
– Requires N features of the form:     

Are at least m bits on? 
– Each feature must look at all the 

components of the input.
• The 2-D connectedness task 

– requires an exponential number 
of features!

The 7-bit parity task 
1011010  0 
0111000  1  
1010111  1



Why connectedness is hard to compute

• Even for simple line drawings, there are 
exponentially many cases.

• Removing one segment can break 
connectedness
– But this depends on the precise 

arrangement of the other pieces.
– Unlike parity, there are no simple 

summaries of the other pieces that tell 
us what will happen.

• Connectedness is easy to compute with an 
serial algorithm.
– Start anywhere in the ink 
– Propagate a marker
– See if all the ink gets marked.



Learning with hidden units
• Networks without hidden units are very limited in the 

input-output mappings they can model.
– More layers of linear units do not help. Its still linear.
– Fixed output non-linearities are not enough

• We need multiple layers of adaptive non-linear hidden 
units.  This gives us a universal approximator. But how 
can we train such nets?
– We need an efficient way of adapting all the weights, 

not just the last layer. This is hard. Learning the 
weights going into hidden units is equivalent to 
learning features. 

– Nobody is telling us directly what hidden units should 
do. (That’s why they are called hidden units).



Learning by perturbing weights

• Randomly perturb one weight and see 
if it improves performance. If so, save 
the change.
– Very inefficient. We need to do 

multiple forward passes  on a 
representative set of training data 
just to change one weight.

– Towards the end of learning, large 
weight perturbations will nearly 
always make things worse.

• We could randomly perturb all the 
weights in parallel and correlate the 
performance gain with the weight 
changes. 
– Not any better because we need 

lots of trials to “see” the effect of 
changing one weight through the 
noise created by all the others.

Learning the hidden to output 
weights is easy. Learning the 
input to hidden weights is hard.

hidden units

output units

input units



The idea behind backpropagation

• We don’t know what the hidden units ought to do, but we 
can compute how fast the error changes as we change a 
hidden activity.
– Instead of using desired activities to train the hidden 

units, use error derivatives w.r.t. hidden activities.
– Each hidden activity can affect many output units and 

can therefore have many separate effects on the error. 
These effects must be combined.

– We can compute error derivatives for all the hidden units 
efficiently. 

– Once we have the error derivatives for the hidden 
activities, its easy to get the error derivatives for the 
weights going into a hidden unit.



A change of notation

• For simple networks we use the 
notation
x for activities of input units
y for activities of output units
z for the summed input to an 

output unit

• For networks with multiple hidden 
layers:
y is used for the output of a unit in 

any layer
x is the summed input to a unit  in 

any layer
The index indicates which layer a 

unit is in. i
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Non-linear neurons with smooth derivatives

• For backpropagation, we need 
neurons that have well-behaved 
derivatives.
– Typically they use the logistic 

function
– The output is a smooth 

function of the inputs and the 
weights.
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Sketch of the backpropagation algorithm
on a single training case

• First convert the discrepancy 
between each output and its 
target value into an error 
derivative.

• Then compute error 
derivatives in each hidden 
layer from error derivatives in 
the layer above.

• Then use error derivatives 
w.r.t. activities to get error 
derivatives w.r.t. the weights. i

j

jj
j

j
j

j

y
E

y
E

dy
y
E

dyE












  2
2
1 )(



The derivatives
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Ways to use weight derivatives

• How often to update
– after each training case?
– after a full sweep through the training data?
– after a “mini-batch” of training cases?

• How much to update
– Use a fixed learning rate?
– Adapt the learning rate?
– Add momentum?
– Don’t use steepest descent?



Overfitting 

• The training data contains information about the 
regularities in the mapping from input to output. But it 
also contains noise
– The target values may be unreliable.
– There is sampling error. There will be accidental 

regularities just because of the particular training 
cases that were chosen.

• When we fit the model, it cannot tell which regularities 
are real and which are caused by sampling error. 
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling 

error really well. This is a disaster.



A simple example of overfitting

• Which model do you 
believe?
– The complicated model 

fits the data better.
– But it is not economical

• A model is convincing when 
it fits a lot of data surprisingly 
well.
– It is not surprising that a 

complicated model can fit 
a small amount of data.


