
Neural Networks

Lecture 3
Learning in multi-layer networks

Preprocessing the input vectors

• Instead of trying to predict the answer directly from the
raw inputs we could start by extracting a layer of
“features”.
– Sensible if we already know that certain combinations

of input values would be useful (e.g. edges or corners
in an image).

• Instead of learning the features we could design them by
hand.
– The hand-coded features are equivalent to a layer of

non-linear neurons that do not need to be learned.
– So far as the learning algorithm is concerned, the

activities of the hand-coded features are the input
vector.

The connectivity of a perceptron

The input is recoded using
hand-picked features that do
not adapt.

Only the last layer of weights
is learned.

The output units are binary
threshold neurons and are
each learned independently.

non-adaptive
hand-coded
features

output units

input units

Is preprocessing cheating?
• It seems like cheating if the aim to show how

powerful learning is. The really hard bit is done
by the preprocessing.

• Its not cheating if we learn the non-linear
preprocessing.
– This makes learning much more difficult and

much more interesting..
• Its not cheating if we use a very big set of non-

linear features that is task-independent.
– Support Vector Machines make it possible to

use a huge number of features without
requiring much computation or data.

What can perceptrons do?

• They can only solve tasks if the
hand-coded features convert the
original task into a linearly
separable one. How difficult is this?

• The N-bit parity task :
– Requires N features of the form:

Are at least m bits on?
– Each feature must look at all the

components of the input.
• The 2-D connectedness task

– requires an exponential number
of features!

The 7-bit parity task
1011010  0
0111000  1
1010111  1

Why connectedness is hard to compute

• Even for simple line drawings, there are
exponentially many cases.

• Removing one segment can break
connectedness
– But this depends on the precise

arrangement of the other pieces.
– Unlike parity, there are no simple

summaries of the other pieces that tell
us what will happen.

• Connectedness is easy to compute with an
serial algorithm.
– Start anywhere in the ink
– Propagate a marker
– See if all the ink gets marked.

Learning with hidden units
• Networks without hidden units are very limited in the

input-output mappings they can model.
– More layers of linear units do not help. Its still linear.
– Fixed output non-linearities are not enough

• We need multiple layers of adaptive non-linear hidden
units. This gives us a universal approximator. But how
can we train such nets?
– We need an efficient way of adapting all the weights,

not just the last layer. This is hard. Learning the
weights going into hidden units is equivalent to
learning features.

– Nobody is telling us directly what hidden units should
do. (That’s why they are called hidden units).

Learning by perturbing weights

• Randomly perturb one weight and see
if it improves performance. If so, save
the change.
– Very inefficient. We need to do

multiple forward passes on a
representative set of training data
just to change one weight.

– Towards the end of learning, large
weight perturbations will nearly
always make things worse.

• We could randomly perturb all the
weights in parallel and correlate the
performance gain with the weight
changes.
– Not any better because we need

lots of trials to “see” the effect of
changing one weight through the
noise created by all the others.

Learning the hidden to output
weights is easy. Learning the
input to hidden weights is hard.

hidden units

output units

input units

The idea behind backpropagation

• We don’t know what the hidden units ought to do, but we
can compute how fast the error changes as we change a
hidden activity.
– Instead of using desired activities to train the hidden

units, use error derivatives w.r.t. hidden activities.
– Each hidden activity can affect many output units and

can therefore have many separate effects on the error.
These effects must be combined.

– We can compute error derivatives for all the hidden units
efficiently.

– Once we have the error derivatives for the hidden
activities, its easy to get the error derivatives for the
weights going into a hidden unit.

A change of notation

• For simple networks we use the
notation
x for activities of input units
y for activities of output units
z for the summed input to an

output unit

• For networks with multiple hidden
layers:
y is used for the output of a unit in

any layer
x is the summed input to a unit in

any layer
The index indicates which layer a

unit is in. i

j

j

i

j

j

y

x

y

x

z

y

Non-linear neurons with smooth derivatives

• For backpropagation, we need
neurons that have well-behaved
derivatives.
– Typically they use the logistic

function
– The output is a smooth

function of the inputs and the
weights.

)(1

1

1

jj
j

j

ij
i

j
i

ij

j

j
j

ij
i

ijj

yy
dx
dy

w
y
x

y
w
x

x
e

y

wybx


















 

0.5

0
0

1

jx

jy

Its odd to express it
in terms of y.

•

Sketch of the backpropagation algorithm
on a single training case

• First convert the discrepancy
between each output and its
target value into an error
derivative.

• Then compute error
derivatives in each hidden
layer from error derivatives in
the layer above.

• Then use error derivatives
w.r.t. activities to get error
derivatives w.r.t. the weights. i

j

jj
j

j
j

j

y
E

y
E

dy
y
E

dyE












  2
2
1)(

The derivatives

 




































j j
ij

j ji

j

i

j
i

jij

j

ij

j
jj

jj

j

j

x
Ew

x
E

dy
dx

y
E

x
Ey

x
E

w
x

w
E

y
Eyy

y
E

dx
dy

x
E)1(j

i
i

j

j

y

x

y

Ways to use weight derivatives

• How often to update
– after each training case?
– after a full sweep through the training data?
– after a “mini-batch” of training cases?

• How much to update
– Use a fixed learning rate?
– Adapt the learning rate?
– Add momentum?
– Don’t use steepest descent?

Overfitting

• The training data contains information about the
regularities in the mapping from input to output. But it
also contains noise
– The target values may be unreliable.
– There is sampling error. There will be accidental

regularities just because of the particular training
cases that were chosen.

• When we fit the model, it cannot tell which regularities
are real and which are caused by sampling error.
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling

error really well. This is a disaster.

A simple example of overfitting

• Which model do you
believe?
– The complicated model

fits the data better.
– But it is not economical

• A model is convincing when
it fits a lot of data surprisingly
well.
– It is not surprising that a

complicated model can fit
a small amount of data.

